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 Abstract 

The requirement for a highly efficient plasma source that can operate in an electric 
propulsion capacity has led to renewed research on helicons.  Helicons have long been 
known to be a highly efficient (>90%) and high density (>1013 cm-3) method to generate 
plasma.  It has not been until recently though, that these sources have been given interest by 
the propulsion community.  Much recent research toward this end has focused on 
detachment of ions from the magnetic field lines which can be as great as a few hundred 
Gauss.  Investigations to date have shown that this may be possible through ambipolar 
effects or acceleration through a double layer.  Preliminary investigations suggest electrons 
that are generated near the diverging section of the axial magnetic field will enhance the 
ambipolar acceleration of ions out of the device.  Toward this end, a radio frequency (RF) 
antenna that propagates a wave toward the converging section of the device (diverging 
section of the magnetic field) will dictate where the bulk of the RF energy is absorbed.  This 
has led to the design of a conical antenna.  Preliminary work based on a uniform density 
model suggest that at smaller radii there is an increase in electron density and that there are 
further ways to control the density and temperature based on considerations such as 
pressure, frequency, and antenna length. The focus of this investigation will be to observe 
and compare the differences in the wave fields (Br, Bθ, Bz) between a traditional cylindrical 
helicon and that of a conical helicon.   

 
* Graduate Student, Nuclear, Plasma, and Radiological Engineering, mreilly@uiuc.edu 
† Professor and Laboratory Director, Nuclear, Plasma, and Radiological Engineering, ghmiley@uiuc.edu 
‡ Graduate Student, Aerospace Engineering, dkirtley@umich.edu 
§ Research Scientist, Spacecraft Branch, AFRL/PRSS, william.hargus.ctr@edwards.af.mil 



Nomenclature 

a = fixed radius                μ0 = permeability of free space 
BB0 =  static magnetic field               φ = spherical angle 
BBr = radial component of magnetic field           θ = cylindrical/spherical angle 
BBθ = azimuthal component of magnetic field         θwall = fixed angle of cone 
BBz = axial component of magnetic field           ω = driving frequency 
E =  electric field ωc = cyclotron frequency 
e = electric charge ωp = plasma frequency 
f = driving frequency 
g = generic function 
i = imaginary number 
Jm = Bessel function 
j =  current density 
k = wave number 
k =  wave vector 
m = mode number 
n = density (plasma + neutral) 
n0 = plasma density 
ne = electron density 
Pl,m = associated Legendre polynomial 
r = radius 
t = time 
Yl,m = spherical harmonic 
x,y,z = Cartesian units 
 

I. Introduction 
 
he term ‘helicon’ was first used in 1960 by Aigrain [1], to describe waves that propagate in the presence of a 
magnetic field for the frequencies between the ion and electron cyclotron frequencies.  Helicon waves are a 

subclass of whistler waves which were first investigated by Storey in the 1950’s [2].  Whistler waves are right-
handed circularly polarized waves that propagate in free space differing from helicons in two main regards: (1) 
helicons are of such a lower frequency than whistler waves that the electron gyrations (being so much faster) may be 
neglected and (2) helicons propagate in a bounded system [3], specific to this study, a cylindrical or conical 
boundary.  Helicon waves were initially studied in metals and semiconductors by Libchaber [4] and Rose [5] in the 
early 1960’s who observed the wave propagation at frequencies much less than the electron cyclotron frequency and 
whose wave vector k was parallel to the magnetic field.  Soon afterwards, helicons were observed in gaseous plasma 
by Lehane and Thoneman [6], Kuckes [7], and Nyack and Christiansen [8] who all observed right-handed circularly 
polarized waves in a laboratory experiment.  The experiments were run from power levels of several hundred watts 
to three kilo-watts while a dc solenoidal field of several hundred Gauss was applied.  All three found comparisons to 
agree well with the theory of plasma wave propagation in an insulated cylinder for a uniform plasma profile 
originally derived by Klozenberg, McNamara, and Thoneman [9] (KMT theory).  However, the experiments were 
limited in scope by the diagnostics and equipment at hand and it wasn’t until the 1970’s when Boswell presented his 
work on waves in gaseous plasma [10-13] and Chen [3, 14-27] began to investigate helicons that much experimental 
data began to be produced. Thus, the great majority of theory and experimental data that is relevant to this study was 
done by Boswell, Charles, and Chen.  Specifically, the resonant absorption of waves in plasma at or near the lower 
hybrid frequency as well as downstream density peaks and most recently double layers is what this work will 
ultimately investigate. 

T 
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II. Cylindrical Wave Fields 
 
The description of helicon waves follows the analysis of Chen and others where the basic equation to be solved is 
the simplified Ohm’s law 

0neE j B= ×               (1.1) 

where the static applied magnetic field is 0 0B B z= $ and we use Maxwell’s equations  

BE
t

∂
∇× = −

∂
              (1.2) 

 0B jμ∇× =               (1.3) 

0B∇ =�                (1.4) 

0j∇ =�                (1.5) 

with perturbations of the form exp ( )i m kz tθ ω+ − to obtain 

 

1

0 0

0

enB B
k B

μω
−

⎛ ⎞
= ∇×⎜ ⎟

⎝ ⎠
          (1.6) 

where we let  

 
2

0 0
2

0

p

c

en
k B k c

ωμω ωα
ω

≡ =           (1.7) 

And equation (1.6) then becomes  

B Bα∇× =             (1.8) 

and finally taking the curl of equation (1.8) yields 

   2 2 0B Bα∇ + =            (1.9) 

Writing this in cylindrical coordinates for the z-component gives 

2
'' ' 2

2

1 0z z z
mB B T B

r r
⎛ ⎞

+ + − =⎜ ⎟
⎝ ⎠

       (1.10) 

where  2 2T kα= + 2
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r = 5 cm r = 10 cm r = 15 cm 
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There must be a finite solution at r=0  Jm(Tr), so that 

3 ( )z mB C J Tr=            (1.11) 

 The r and θ components are then obtained from equation (1.8)  

z
im

rB ikB B
r θ α− =           (1.12) 

'
r zikB B Bθα− =            (1.13) 

These can then be algebraically manipulated into solving for the r and θ components of the magnetic field in terms 
of Bessel functions Jm  

'3
2r m

iC m
mB J kJ

T r
α⎛ ⎞= −⎜

⎝ ⎠
⎟          (1.14) 

Figure 1. Evolution of Cylindrical Helicon Wave Fields with Increasing Applied Magnetic Field. 
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'3
2 m m

C mB kJ J
T rθ α⎛ ⎞= +⎜ ⎟

⎝ ⎠
         (1.15) 

We can now analyze what the field structure should look like given some basic input parameters.  For the cases 
considered here, we assume a uniform electron density of 1012 cm-3, 13.56 MHz driving frequency, and an m=+1 
helical antenna.  We take a look at three separate cases of varying radial size, namely, cylinders of 5, 10, and 15 cm 
radii.  The results are indicated in Figure 1.  Here we find that for the density selected helicon waves will not 
propagate at lower magnetic fields if the radius is too large.  At 100 Gauss external field, only the 5 cm radius 
geometry will support helicon waves.  It is not until the applied field reaches 250 Gauss that the 10 cm geometry 
will support wave propagation and until about 500 Gauss that the 15 cm geometry will support helicon waves.  
Additionally, once the applied external magnetic field is great enough to allow helicon wave propagation, further 
increase in applied field does not change the structure.  At least not until more input power is available.  A higher 
level of input power will raise the electron density and the helicon wave field will start to dissipate until a higher 
magnetic field is applied.  Clearly, there is a delicate balance between the input power and applied magnetic field 
necessary to sustain helicon wave propagation.   

 
Being able to address the profile of the radial magnetic field is what differentiates a purely inductive discharge from 
a helicon discharge.  So if we are to investigate different geometries such as the conical one proposed here, we will 
need to perform a similar analysis to that done in cylindrical geometry to look at the new radial profiles.    

 
 

III. Spherical Wave Expansion for Conical Geometry 
 

 
In cylindrical coordinates, helicon waves are described by perturbations of the form,  
 

exp ( )i m kz tθ ω+ −              (2.1) 

where the coordinate system used is .  This represents waves traveling in the +z direction in time and 
rotating either clockwise (m>0) or counterclockwise (m<0) with respect to θ.  However, when examining helicon 
waves in a spherical coordinate system to describe wave propagation in a cone, the perturbations must take a 
different form.  To begin the analysis we assume spherical perturbations are of the form 

$r θ+ +$ z$

 
exp ( )i m kr tφ ω+ −                                                                       (2.2) 

where the coordinate system is $ $r θ φ+ +$ .  This represents waves traveling in the r direction in time and rotating 
either clockwise (m>0) or counterclockwise (m<0) with respect to φ.  The perturbations described here assume wave 

propagation in the direction where the cone wall is given by a constant r$ wallθ θ=  from the x-axis.  The situation is 
illustrated below in Figure 2. 
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When utilizing a cylindrical coordinate system to study helicon waves, the system inherently allows for the 
simplicity of applying a constant magnetic field BB0 in the z-direction; or the direction of wave propagation.  
However, when analyzing wave propagation in spherical geometry, a constant magnetic field in the Cartesian or 

cylindrical z-direction now must be given in terms of the different unit vectors; $ $, ,r θ φ$ .  The system described 
above is shown in Figure 3 but now includes the applied magnetic field in the Cartesian/cylindrical +z-direction.  
The objective is to describe the magnetic field in terms of the spherical unit vectors.  
  

  

θ0
=

r = 0 r = L 

z 

x 

θw = const φ 

0
0
0 2

r
θ π
φ π

≤ ≤ ∞
≤ ≤
≤ ≤

 

0B B z=
ur

$  

Figure 3.  Direction of Applied Magnetic Field with Spherical Coordinates. 

Figure 2. Coordinate Axis for Analyzing Conical Antenna Design.  

θ0
=

r = 0 

z 

θw

0
0
0 2

r
θ π
φ π

≤ ≤ ∞
≤ ≤
≤ ≤

 

= const  φ 

r = L 

x 
r 
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 describe the unit vectors in the z-direction, we must first write the spherical unit vectors in terms of their 
cartesian counterparts,  

z

To

$ $

$ $ $

$ $ $

sin cos sin sin cos

cos cos cos sin sin

sin cos

r x y

x y z

x y

θ φ θ φ θ

θ θ φ θ φ θ

φ φ φ

= + +

= + −

= − +

$ $

$   (2.3) 

 
These are the normalized spherical unit vectors.  We can now algebraically manipulate the above 3 equations and 

solve for the unit vector in the z-direction in terms of $ $, ,r θ φ$  which yields  
 

$cos sinz rθ θθ= −$ $   (2.4) 
 
Therefore, when describing the static magnetic field applied in the z-direction, we can relate the different coordinate 
systems by,  

$
0 0 (cos sin )B B z B rθ θθ= = −

ur
$ $                                                 (2.5) 

 
We can now begin to describe the wave propagation in spherical coordinates beginning with Ohm’s law as in 
equation (1.1),  
 

 0neE j B= ×
ur r uur

  (2.6) 
 
where B0 is given above in equation (2.5).  Again we make use of Maxwell’s equations  

BE
t

∂
∇× = −

∂

ur
ur

  (2.7) 

0B jμ∇× =
ur r

  (2.8) 

0B∇ =
ur
�   (2.9) 

0j∇ =
r
�                              (2.10) 

and perturbations given by
 

 exp ( )i m kr tφ ω+ − so that equation (2.7) becomes 
 

 E i Bω∇× =
ur ur

                                                                              (2.11) 
 
Taking the curl of equation (2.6) to obtain 
 

0 0 0 0 0( ) ( ) ( ) ( )j B B j j B j B B jE ∇× × ∇ − ∇ + ∇ − ∇
∇× = =

r

ne ne

uur uur r r uur r uur uur r
ur � � � �

  (2.12) 

 
The third and fourth terms of equation ( .12) are zero 

dditionally the second term is zero because the applied magnetic field is constant in all directions.  If we now 
2 as a result of Maxwell’s equations (2.9) and(2.10).  

A
equate the left hand sides of equation (2.11) and (2.12) we arrive at  
 



0( )B ji B
ne

ω ∇
=

uur r
ur �

                                                                       (2.13) 

 
In terms of the wave perturbations, j is similarly defined as 

j exp ( )j i m kr tφ ω+ −=
r

 (2.14) 
 

 we now expand equation(2.13), we obtain,  

 

If
 

$( ) $ $1 1r r jθ θ φ
⎛ ⎞∂ ∂ ∂

+ +⎜ ⎟
r

$ $�             (2.15) 0 0
1 cos sin

sin
i B B B

ne r r r
ω θθ

θ θ φ
⎧ ⎫⎡ ⎤⎪ ⎪= −⎨ ⎬⎢ ⎥∂ ∂ ∂⎝ ⎠⎪ ⎪⎣ ⎦

ur

hich upon simplifying the inner product becomes,  
 

⎩ ⎭
 
w

$
0 0

1 cos sini B B B j
ne r r

ω θ θ
θ

1 θ⎧ ⎫∂ ∂⎛ ⎞= −⎨ ⎬⎜ ⎟∂ ∂⎝ ⎠⎩ ⎭

ur r
 (2.16) 

Inserting equation (2.14) for j into equation (2.16) 

 $1 1cos sini B B Bω θ θ θ⎧ ∂ ∂
0 0 exp ( )j i m kr t

ne r r
φ ω

θ
⎫⎛ ⎞ + −= −⎨ ⎬⎜ ⎟∂ ∂⎝ ⎠⎩ ⎭

                       (2.17) 

 
However, the partial derivative with respect to θ is zero becau

e radial arc from –θwall to +θwall.   

Note: This assumption does not include a perturbation in the θ-direction. 
nalysis done in cylindrical geometry where the basic assumption

milar waves are assumed to propagate although the waves are 

Simplifying equation (2.17) will yield,  
 

ur

se the current term is assumed to be constant across 
th
 

 This assumption was based on the helicon 
 of a uniform density gives rise to plane wave a

wave propagation.  In spherical coordinates, si
spherical waves of a constant radius ‘r’.  
 

( )0 cos exp ( )B ik j i m kr t
i B

ne
θ φ ω

ω
+ −

=
ur

 (2.18) 

 
hich becomes w

 

( )0 cosB k j
B

ne
θ

ω
=

r
ur

 (2.19) 

Inserting equat on (2.8) for j 
 

 
i

( )0
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0

cosB k
B B

neμ ω
θ

= ∇×
ur ur

 (2.20) 

 



If
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 we define the constants in equation (2.20) as  
 

0 ne

0B k
μ ωα =                                                                                   (2.21) 

 

 
Then equation (2.20) becomes 

( )cosB Bα θ= ∇×
ur ur

 (2
 

aking the curl of both sides of equation (2.22)   

.22) 

T
 

( ){ }cosB Bα θ∇× = ∇× ∇×
ur ur

 (2.23) 

 
The analysis becomes further complicated when considering the c

rm.  Equation (2.23) then becomes 
url in equation(2.23), there is the additional cosθ 

te
 

( )

( ) $ 

( ) $

cos sin ...
sin

1 1... cos ...
sin

cos

r

BB r
r

BB rB
r r r

B

θ
φ

φ

θ θ
θ θ φ

α θ θ
θ φ

θ... rrB
r r θ φ

θ

⎧ ⎫⎧ ⎫∂∂
− +⎨ ⎬⎪ ⎪∂ ∂⎩ ⎭⎪ ⎪

⎪ ⎪⎧ ⎫∂ ∂⎪ ⎪∇× = ∇× + − +⎬ ⎬∂ ∂⎩ ⎭ ⎪
⎪ ⎪∂∂

⎨ ⎨
⎪

⎧ ⎫⎪ ⎪+ −⎨ ⎬∂ ∂⎩ ⎭⎪ ⎪⎩ ⎭

$

ur
 (2.24) 

 
ive at the second order differential equation for the magnetic field structure, the 

Laplacian in spherical coordinates is needed 
 

And in order to ultimately arr

 
212 2

2 2 2

1 1 sin
sin

r
r

θ2 2 sinr r r r θ θ θ θ φ
∂ ∂ ∂ ∂⎛ ⎞ ⎛∇ = + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠

 (2.25) 

 
For reference, the curl in spherical coordinates is given by  

∂⎞
∂ ∂⎝ ⎠

 

 

( )

( ) $ ( ) $

1
sin

BB
r

θ

θ θ
sin ...

1 1 1...
sin

r r

B r

B BrB rB
r r r r r

φ

φ θ

θ
φ

 

θ φ
θ φ θ

− +⎬∂⎩ ⎭
⎧ ⎫∂ ∂∂ ∂

⎧ ⎫∂∂
∇× = ⎨∂

⎧ ⎫+ − + −⎨ ⎬ ⎨ ⎬∂ ∂ ∂ ∂⎩ ⎭⎩ ⎭

 (2.26) 

ur
$

 
If we attempt to look at this from a different perspective and assume that because the conical angle we are looking at 
in the lab is small (~ 4o ), we can approximate B as  
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 0 0B B z B r= =
ur

$ $  (2.27) 
 
We will still assume perturbations of the form exp ( )i m kr tφ ω+ − and will reconsider the problem beginning 

ith equation (2.13) and expanding such that 

 

w
 

( ) $ $
0

1 1 1
sin

i B B r r j
ne r r r

ω θ
θ θ φ

⎧ ⎫⎡ ⎤⎛ ⎞∂ ∂ ∂⎪ ⎪= + +⎨ ⎬⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

ur r
$ $� φ  (2.28) 

 
Substituting equation (2.14) into equation (2.28) yields 
 

( ) 0
0

1 exp ( ) B iki B B j i m kr t j
ne r ne

ω φ ω∂⎧ ⎫= + −⎨ ⎬∂⎩

ur r
=

⎭
 (2.29) 

we now substitute Maxwell’s equation (2.8) for j into equation (2.29) we arrive at  

 

If 
 

0

0

1B kB B
neμ ω

= ∇× = B
α

∇×
ur ur ur

 (2.30) 

where α is defined identically as in equation (2.21).  Taking the curl of both sides of equation (2.30) where 
 

( ) ( ) 2B B B∇× uation (2.9).  Equation ∇× = ∇ ∇ − ∇
ur ur ur

�  where the second term is zero according to Maxwell’s eq

(2.30) then becomes  
 

2 2B B Bα α−∇ = ∇× =
ur ur ur

 (2.31)  

 2 2 0B Bα∇ + =
ur ur

 (2.32) 
 
Which is the Helmholtz equation for spherical coordinates and is written  
 

2
ur

ur
 2 2

2 2

1 1 1sin 0
sin

B B Br B
r

θ α
θ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂
+ + + =⎟

∂ ⎠

ur ur

 (2.33) 

his equation is separable using the approach 
 

2 2 2sinr r r r θ θ θ φ⎜ ⎟ ⎜
∂ ∂ ∂ ∂⎝ ⎠ ⎝

 
T

( ) ( ) ( ) ( ), ,B r R rθ φ θ= Θ Φ φ  

ields 

(2.34)  
 
When substituting equation (2.34) into equation (2.33) y
 

2
2 2 2

2 2 0
φ

=
∂

 (2.35)  
1 1 1sin

sin sin
Rr r

R r r
α θ

θ θ θ θ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂Θ ∂ Φ

+ + +⎜ ⎟ ⎜ ⎟
∂ ∂ Θ ∂ ∂ Φ⎝ ⎠ ⎝ ⎠

ur ur ur

e can take the terms that only involve φ of the last term in equation (2.35) and set it equal to a constant –m2 we 
obtain 
 

 
W



2
2

2

1 d m
dφ

Φ
= −

Φ

ur
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a
can set these terms equal to anothe
θ components of equation (2.35) th

         

(2.36) 

 
This tr nsforms equation (2.35) such that the last two terms are now a function of θ only and the constant m.  We 

r constant -l(l+1) which will be helpful when solving the radial components.  The 
en become 

 

( )1l l
θ

2

2

1 sin
sin s

d d m
d d

θ
θ θ θ

⎛ ⎞Θ −
u

+ = − +
in⎜ ⎟

Θ ⎝ ⎠

r

while equation (2.37) is recognized as the 

             (2.37) 

 
Equation (2.36) has the familiar solution as a simple harmonic oscillator 
ssociated Legendre equation.  The solution to both are given by  a

 
( ) ime φφΦ =  (2.38)  

( ) ( )cosm
lPθ θΘ =  (2.39) 

 values from –l to l, and ( )cosm
lP θIn which l=0,1,2,… and m runs over the integer  are the associated Legendre 

olynomials.  If l is not an integer, the solution to equation (2.37) diverges for cosθ = 1 or -1 (θ = 0 or π).  Often the 
lutions of Θ and Φ are combined such that  

p
so
 
 ( ) ( ) ( ) ( )cosm im

lP e ,m
lYφθ φ θΘ Φ = θ φ=  (2.40) 

here 
 

( ),m
lY θ φw  are known as spherical harmonics.  Now examining the radial compon

yields  
ents of equation (2.35) 

 ( )2 2 2 1 0d d Rr r l l R
dr dr

α
⎛ ⎞

⎡ ⎤+ − + =⎜ ⎟ ⎣ ⎦
⎝ ⎠

ur

Equivalently, this can be written as  

 (2.41) 

 

 

( )
2

2 2 2 2dr dr ⎣ ⎦
 
Making the appropriate substitution so that  

2 1 0d R d Rr r r l l Rα⎡ ⎤+ + − + =
ur ur

 (2.42) 

 

 

( ) ( )
( )

1
2

Z r
R r

rα
=  (2.43) 

 
Transforms equation (2.42) to  
 

( )1 02l Z+ =⎥⎦
 (2.44) 

2 2
2 2 2

2

d Z d Rr r r l
dr dr

α⎡ ⎤+ + −⎢⎣

ur ur



 
( )1

2l
J rα

+
and 
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l+1/2 order The solution to this equation is given by the Bessel’s function of which are 

( )1
2l

N rα
+

.  Combining these with the original substitution of equation (2.43) yields  

( )
( )

( )
1

2
1

2

l
l

J r
j r

r

α
α

α

+
=     

re the spherical Bessel functions of the first kind.  The 

                                      (2.45) 

 
which a ( )1

2l
N rα

+
 terms have been dropped to ensure that 

the solution is finite at the origin.  If we now recombine solutions to the spherical Helmholtz equation as defined in 
quation (2.34) we obtain  

 

)a j r Y

e

 (B r ) ( ) (
0

, , ,
l

m
lm l l

l m l
θ φ α θ φ

∞

= =−

= ∑ ∑  (2.46) 

here alm are determined by the boundary conditions.   

ote:  This is of course the simplified version of the traveling spherical waves.   

1) Perturbation is of the form

 
w
 
N
Key assumptions made:  

exp ( )i m kr tφ ω+ − .  We know that this is incorrect because it violates 
conservation of energy.  The energy density stored in the wave is equal to the square of its amplitude.  
However, the outgoing wave increases its area b
the wavefront increases as r2.  This cannot be true and we can eliminate this fact by dividing the 
amplitude by r (which divides the energy density by r2).  So the new (correct form) of perturbations to 

eling waves must be  

y a factor of r2.  This would imply that the energy of 

the spherically trav
 

0
exp ( )i m kr tg g

r
φ ω+ −

∝  (2

 

.47) 

2) The magnetic field is given by 0 0B B z B r= =
ur

$ $ .  As shown earlier, the actual applied  to 
be described in terms of the spherical coordinate unit vectors which yielded, 

$

field needs

 

 0 0 (cos sin )B B z B rθ θθ= = −
ur

$ $  (2.48) 
 
Therefore, the next part of the analysis will be to correct for the first assumpti . on   
 

This time we utilize the expansion of equation (2.13) for 0 0B B z B r= =
ur

$ $  and j given by  
 

 0
exp ( )i m kr tj j

r
φ ω+ −

=
r

 (2.49) 

 
Upon substitution yields 
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    0
1 exp (i m kr ti B B j
ne r r

φ ωω ⎧ ⎫∂ + −⎛= ⎨
) ⎞

⎜∂ ⎝ ⎠⎩ ⎭

ur

   

⎬⎟  (2.50)  

 
Evaluating the derivative product gives 
 

 0 0
2 2

1B Bik⎛ ⎞ur
                                           

1exp ( ) iki B j i m kr t j
r r

ω φ ω ⎛ ⎞= − + − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠

r
 (2.51) 

 
Substituting M
 

 

ne ne r r⎝ ⎠

axwell’s equation (2.8) for the current density j gives 

0 1B ik
2

0

B B
i ne rμ ω

⎛ ⎞= − ∇×⎜
⎝

ur ur
 (2.52) 

r ⎟
⎠

 
aking the curl of both sides of equation (2.52) yields 

 

 

T

0
2

0

1B ikB B
i rμ ωne r

⎛ ⎞ ⎧ ⎫⎛ ⎞∇×∇× = − ∇×⎨ ⎬⎜ ⎟
⎠

⎟ ⎜
⎝⎩ ⎭

ur ur

 
At this p t, an analytical solution appears unlikely and the equation that will have to be numerically solved is  

⎝ ⎠
 (2.53) 

oin

( )2 2 2
2

11 0ikrk r B ikr B 
r

α ⎧ −⎛ ⎞+ − ∇× ∇× =⎨ ⎬⎜ ⎟
⎫ur

⎝ ⎠

ur
 (2.54) 

he attempt of this analysis is similar to that in cylindrical coordinates.  Understanding the plasma magnetic field 
ructure showed when helicon waves could be supported.  Therefore, the same approach was taking for analyzing a 

uch more com ncture, the next step is to 
ither numerical solve the equations involving spherical waves or to assume plane wave propagation in spherical 

ordinates subject to the conical wall boundary conditions which greatly simplifies the solution to the spherical 
armonics obtained above.     

 

IV. Hardware and Initial Setup 
 

urrent hardware consists quartz cylinders, each ~ 45 cm length.  Two are st
.35 cm diameters, while t st is a conical design starting at 3.81 cm diamete

wn schematically below in Figure 4.  

⎩ ⎭
T
st
conical antenna, although ultimately the analysis became m plex.  At this ju
e
co
h

C of 3 raight cylinders with 3.81 cm and 
6 he la r and ending at 10.16 cm diameter as 
sho
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 in the 10-4-10-3 torr range.  The pressure is monitored through a convectron gauge in 
e high pressure range (>10 mTorr) and by a cold cathode gauge in the low pressure range (< 10-4 torr).  However, 

in the intermediary range of 10-4-10-2 rate pressure a capacitance manometer 
calibrated to this pressure range is z tube are mounted on a vibrationally 
ins tics table. 

  
Figure 5.  Schematic of AFRL Experimental Helicon research station. 

 
Each quartz tube is mounted through a conflat flange that is connected to a 0.5 m diameter, 1 m long cylindrical 
vacuum chamber that is pumped to a base pressure of 1x10-6 torr through a 250 l/s turbomolecular pump which is 
ufficient for helicon operations

th
 where neither gauge gives the most accu
used.  Both vacuum chamber and quart

ulated op
90 GHz Microwave 

Interferometer 
0-1200 Gauss  

DC Magnet Coils 

0.3-35 MHz 0-1000W 
Linear Amplifier 

0-100 MHz 
Waveform Generator 

Matching Network 

Half-Turn  
Helical Antenna

Quartz Tube

Power Meter 

Stainless Steel Chamber

Oscilloscope

Electrostatic Ion  
Energy Analyzer 

Turbo & Roughing  
Pumps 

RF Compensated 
Langmuir Probe 

RF EMI Shielding 

3.81 cm 
10.16cmQuartz 

45.72cm

 = 40θ

Figure 4. Schematic of conical quartz tube. 
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Power to the antenna / plasma is supplied by a 0.3-35 MHz 1kW broadband RF generator fed through a autotune 
matching network to the m=+1 helical antenna made of copper strap.  The static magnetic field is supplied by 4 
water-cooled magnets that can supply a continuous uniform field up to 1200 Gauss.  A schematic of the current 
setup with chamber, magnets, antenna, matching network, and quartz tube are shown in  
 
Current diagnostics consist of an RF compensated Langmuir probe with a copper compensation electrode and 4 
chokes near the probe tip to minimize RF pickup at the driving frequency of 13.56 MHz and its first harmonic 27.12 
MHz.  The probe design was modeled after that of Sudit and Chen [28].  Similar to previous helicon work, a 90 GHz 
microwave interferometer has been used.  Both diagnostics are currently ready for use upon proper RF shielding of 
interference.   
 
Lastly, photos of the discharge have been taken to demonstrate the capability of generating RF and helicon 
discharges. Photos of inductively coupled plasma are shown below in Figure 6 for no applied external magnetic 
field.   
 

 
 

 
 
Photos for what is believed to be a helicon discharge at two different power levels and 800 gauss of external field 
are shown in Figure 7.   

Figure 6.  Plasma generated with m=+1 antenna with no applied external B-field. 

Power < 100 Watts Power ~250 Watts 

Fi

 

Power ~500 Watts Power ~800 Watts 

enerated with m=+1 antenna with 800 Gauss agure 7.  Plasma g pplied field. 
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V. Conclusions and Future Work 
 
This study has revealed the fact that cylindrical geometry inherently simplifies the analysis toward arriving at the 
helicon dispersion relation and evaluating the wave structure as opposed to a different geometry such as a conical 
antenna analyzed with spherical coordinates.  This is evident by the planar wave propagation in cylindrical geometry 
and the analysis is complicated by spherical wave propagation and the requirement of conservation of energy.  
However, the analysis has led to a differential equation that should be straightforward to analyze numerically and 
ultimately this is the next step.  The goal of solving in spherical coordinates is to determine the wave structure and 
then compare the solution to that of the cylindrical helicon.  The numerical and analytical aspect of this will be 
complemented with experimental measurements using b-dot probes to look at the radial fields.   
 
The projected work will include comparisons between the three quartz tubes currently available, two cylinders of 
different radii and the conical tube.  To date, the author is not aware that anyone has attempted a conical 
configuration for the antenna and insulating wall for plasma wave propagation.  Based on a separate uniform density 

odel, we arrived at the simple expectation that a smaller radius tube will yield higher density plasma for t e 

icrowave interferometry data.  The above measurements will have to be taken for 
ifferent power levels and magnetic field configurations to determine the initiation of the helicon wave discharge as 

described in Section II.   
 
Later on in this study, attention will be given to the observation of a double layer by Charles at fields of 250 gauss 
[29-31], as well as the effect of pressure on plasma potential from the antenna downstream.  The majority of current 
helicon plasma operate at pressures > 1 mTorr where the mean free path for collisions is much less than the antenna 
and radii dimensions.  However, as pointed out by Charles, at lower pressures (0.2-0.4 mTorr) the mean free path 
can be increased to the order of device dimensions and this is believed to be what allows the formation of the double 
layer.  Therefore, the importance of investigating the pressure effects to determine whether this is the case should be 
explored.   
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Helicons: The Why?

Company/Institution Research Time Reference

AFRL 2006-Present Personal Involvement

University of Illinois 2005-Present Personal Involvement[28]

Starfire Industries 2005-Present

NASA (Huntsville) 2006-Present [29]

University of Washington 2004-Present [30]

University of Texas 1998-Present [31-36]

UCLA 1980’s-Present [3, 14-27]

University of Wisconsin 2003-Present [37, 38]

Stanford University 2005-Present

West Virginia University 2000-Present [39, 40]

Cornell University 1991-??? [41]

Europe and Japan 2003?-Present [42-44]

Australian National University 1965-Present [10-13, 45-53]

• Well…everyone else is doing it…

Actually   
• Electrode-less
• High Density at Low Power

1019 m-3 @ 100’s Watts
• High Ionization Efficiency > 90% 
• Variable ISP / Exhaust Velocity
• Wide range of gas / molecular 

propellant
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What is a Helicon and Why?

• Subclass of Whistler Waves…what is a whistler wave?
– Wave travels along magnetic field lines in free space
– Right Hand Polarization

• The electric field rotates clockwise when looking in the direction of propagation

• Helicon Wave
– Bounded whistler wave
– Frequency between ion and electron gyro-frequency

Helicon Discharge
High Density, Axially Magnetized Plasma Column

Argon Helium

ci LH ceω ω ω ω� � �

z

E
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CCP, ICP, Helicon
• CCP – Capacitively Coupled Plasma

– Electrons respond to E-Field Gain Energy
– Can ionize gas directly or indirectly 

RF

Electric Field 

RF

• ICP – Inductively Coupled Plasma
– Time varying E-field generates a time varying magnetic field in the 

longitudinal direction
– Induces azimuthal electric current Gas breakdown

B

Induced E

• Helicon Plasma
– Breakdown is similar to ICP
– Applied static B0 allows radial and transverse waves

Static B• Helicon (W-mode) “blue”
– Sharply Peaked Core Density Profile

• More accurately identified by measuring the radial density profiles

RF

• Identifying the helicon mode
– Often times done by looking for axial density “jumps”

• Capacitive (E-mode)  “pink”
– Hollow Radial Density Profile

• Inductive (H-mode) “purple”
– Flat-Top Density Profile
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Cylindrical Helicon Theory (1)

0neE j B= ×Simplified Ohm’s Law
BE
t

∂
∇× = −

∂

0B jμ∇× =

0B∇ =�

0j∇ =�

2

2

( )B B B

B B

∇×∇× = ∇ ∇ − ∇

∇×∇× = −∇

�

0 exp ( )f f i m kz tθ ω∝ + −

where

With perturbations

2
0 0

2
0

p

c

en
k B k c

ωμω ωα
ω

≡ =

1

0 0

0

enB B
k B

μω
−

⎛ ⎞
= ∇×⎜ ⎟

⎝ ⎠
Result B Bα∇× =

2 2 0B Bα∇ + =

In cylindrical geometry for Bz

2
'' ' 2

2

1 0z z z
mB B T B

r r
⎛ ⎞

+ + − =⎜ ⎟
⎝ ⎠

2 2 2T kα= +where

Finite Solution at r=0 Jm(Tr)

3 ( )z mB C J Tr= '3
2r m m

iC mB J kJ
T r

α⎛ ⎞= −⎜ ⎟
⎝ ⎠

'3
2 m m

C mB kJ J
T rθ α⎛ ⎞= +⎜ ⎟

⎝ ⎠

Apply Boundary Condition
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Cylindrical Helicon Theory (2)

• Radial Current Density vanishes on the boundary

0

0 0r z

B j
imj B ikB
r θ

μ

μ

∇× =

= − =

'3
2

'( ) ( ) 0

r m m

m m

iC mB J kJ
T r

m J Ta kaJ Ta

α

α

⎛ ⎞= −⎜ ⎟
⎝ ⎠

+ =

jr=0 @ r=a

z r

B B
im B ikB B
r θ

α

α

∇× =

− =

0 0 0 0

0 0

3.83

m

B e a n e
n Z k a k B

μ μω ω
= → =

Dispersion Relation for m=+1 Helicons

Uniform radial density profile

Cylindrical coordinates

Helical Antenna

m = +1

Has been initial point for previous work
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Internal Wave Structure

B = 100 Gauss

B = 250 Gauss

B = 500 Gauss

B = 1000 Gauss

Cylindrical Wave Fields; r = 5 cm
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Transition to spherical

0 exp ( )f i m kz tθ ω+ −

Cylindrical Spherical
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Assumes no perturbation in θ direction

Waves travel at a constant radius ‘r’
Uniform radial density
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Spherical Waves (1)

• Complex solution
• Requires numerical analysis
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Spherical Waves (2)

• Separable in Spherical Coordinates • Planar Waves vs. Spherical Waves

Conservation 
of Energy
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Why 4 degree angle
• Comparison between cylindrical tubes and conical 
• Investigate wave field structure
• Density/Temperature/Potential results for same operating parameters

• Small angle approximates B field with      direction

• Tubes in use
– 3.81 cm diameter cylinder
– 6.35 cm diameter cylinder
– Conical design

3.81 cm
10.16 cmQuartz

45.72 cm

θ = 40

r$
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Setup Schematic

90 GHz Microwave 
Interferometer

0-1200 Gauss 
DC Magnet Coils

0.3-35 MHz 0-1000W 
Linear Amplifier

0-100 MHz 
Waveform Generator

Matching Network

Half-Turn 
Helical Antenna

Quartz Tube

Power Meter

Stainless Steel Chamber

Oscilloscope

Electrostatic Ion 
Energy Analyzer

Turbo & Roughing 
Pumps

RF Compensated
Langmuir Probe

RF EMI Shielding

• Laboratory Parameters
– Power = 0-5 kW
– B-field = 0-2 kGauss
– Pressure = 0.2-20 mTorr
– Radius = 1-15 cm
– Frequency = 0.5-27.12 MHz
– Antenna length = 5-30 cm
– Gas = H2,He,Ar,Xe
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Argon Discharge Photos
• No Applied B-field • High B-field ~ 1kGauss

Power < 100 Watts

Power ~250 Watts

Power ~500 Watts

Power ~800 Watts
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Summary and Conclusion

Questions ?

• Dispersion relations which lead to geometry considerations
• Results for infinite homogeneous plasma shown lower hybrid frequency 

waves with 1kGauss B-field in agreement with a few experimental data 
points. 

• Effects can be enhanced at low pressure and through control of RF wave 
absorption
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